Cho A = (1 – a2) :[( + √a)( - √a)] + 1
Trả lời câu hỏi dưới đây:
Rút gọn A.
Ta có : =
=
=> A = (1 – a2) : [(√a + 1)2(1 - √a)2] + 1
= + 1 = + 1 =
(Điều kiện a ≠ 1; a ≥ 0).
Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm
Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn: x2 - 12x – 14y < 0
Cho biểu thức A = ( - + ) : ( x - 2 + )
Rút gọn biểu thức A
Cho phương trình:
ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)
Giải phương trình với a = -2
Chứng minh rằng: AM2 = AN.AB
Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1 và x2. Chứng minh rằng: x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông
Tìm b để A =
Giải hệ phương trình với a = 2
Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K
Tính giá trị biểu thức của A với x =