Skip to main content

Cho 5 điểm xếp thẳng hàng theo thứ tự A, B, C, D, E và AB = BC = CD = DE = a. Dây MN của đường tròn (C; AC) vuông góc với AD tại D; AM cắt đường tròn (B; AB) tại K. Trả lời câu hỏi dưới đây:Các tam giác DKM và AMN là tam giác gì?

Cho 5 điểm xếp thẳng hàng theo thứ tự A, B, C, D, E và AB = BC = CD = DE = a. Dây MN của

Câu hỏi

Nhận biết

Cho 5 điểm xếp thẳng hàng theo thứ tự A, B, C, D, E và AB = BC = CD = DE = a. Dây MN của đường tròn (C; AC) vuông góc với AD tại D; AM cắt đường tròn (B; AB) tại K.

Trả lời câu hỏi dưới đây:

Các tam giác DKM và AMN là tam giác gì?


A.
Tam giác thường
B.
Tam giác cân
C.
Tam giác vuông
D.
Tam giác đều.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Trong tam giác vuông ADM, DK là trung tuyến nên DK=\frac{1}{2}AM=KM 

=> ∆ DKM là tam giác đều (tam giác cân có một góc bằng 60°).

Tương tự ∆ AMN là tam giác đều.

Câu hỏi liên quan

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2