Trong mặt phẳng với hệ tọa độ Oxy, cho tam giácABC có A(1;1), trực tâm H(-1;3), tâm đường tròn ngoại tiếp I(3;-3). Xác định tọa độ các đỉnh B,C biết rằng xB<xC.
Cho hình chóp S, đáy ABCD là hình chữ nhật cạnh AB = a, AD = 2a hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy. Cho SA = a√3, trên SA lấy 1 điểm I sao cho SI = . Gọi K là giao điểm của SD với mặt phẳng (BCI). Tính thể tích khối chóp S.BCKI.
Trong mặt phẳng tọa độ, giả sử điểm A biểu diễn nghiệm z1 của phương trình z2 - 6z + 45 = 0 và điểm B biểu diễn số phức z2 = -z1 . Chứng minh rằng tam giác OAB vuông
Trong mặt phẳng với hệ trục Oxy, cho hình chữ nhật ABCD. Hai điểm B và C thuộc trục tung. Phương trình đường chéo AC: 3x + 4y - 16 = 0. Xác định tọa độ các đỉnh của hình chữ nhật đã cho biết rằng bán kính đường tròn nội tiếp tam giác ACD bằng 1
Trong mặt phẳng Oxy, cho hai đường thẳng có phương trình: d1: x + y + 1 = 0; d2: 2x – y – 1 = 0. Lập phương trình đường thẳng đi qua điểm M(1 ; -1) cắt d1, d2 tương ứng tại A, B sao cho:
Trong mặt phẳng với hệ trục Oxy, cho hình chữ nhật ABCD có đường chéo AC: x + 2y - 9 = 0. Điểm M(0 ; 4) nằm cạnh BC. Xác định tọa độ của các đỉnh hình chữ nhật đã cho biết rằng diện tích của hình chữ nhật đó bằng 6, đường thẳng CD đi qua N(2 ; 8) và đỉnh C có tung độ là một số nguyên.
Trong mặt phẳng với hệ trục tọa độ Oxy cho ∆ABC, với phương trình các đưởng thẳng chứa cạnh AB,BC lần lượt là: 4x+3y-4=0; x-y-1=0. Phân giác trong của góc A nằm trên đường thẳng: x+2y-6=0. Tìm tọa độ các đỉnh của ∆ABC.
Trong mặt phẳng với hệ trục Oxy, cho hai điểm A(1 ; 0), B(3 ; 0). H là điểm thay đổi trên Oy. AH và BH cắt đường tròn đường kính AB tại D và E. Chứng minh rằng DE luôn đi qua một điểm cố định. Xác định tọa độ điểm cố định đó
Trong mặt phẳng với hệ trục Oxy, cho đường tròn (C): (x – 1)2 + (y + 2)2 = 4. Tìm các điểm A, B, C nằm trên đường tròn (C) biết rằng điểm B có hoành độ dương AB = BC và M(0; -1) là trung điểm cạnh BC
Trong không gian với hệ tọa độ Oxyz, cho : 3x + 2y - z + 4 = 0, I(2; 2; 0). Tìm tọa độ điểm M biết rằng MI ⊥ , đồng thời M cách đều gốc tọa độ và mặt phẳng
Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có trọng tâm G(4 ; 3), trung điểm của AC là M(3 ; 3), phương trình đường thẳng chứa đường cao kẻ từ C là ∆: x + y - 21 = 0. Tìm tọa độ các đỉnh của tam giác đã cho.
Trong mặt phẳng với hệ trục Oxy, cho đường thẳng ∆: x - y = 0 và đường tròn (C): x2 + y2 + 2x – 6y + 6 = 0. Từ một điểm M bất kỳ trên ∆ kẻ hai tiếp tuyến MA, MB đến đường tròn (C) (A và B là hai tiếp điểm). Tìm M để đường thẳng AB đi qua điểm E(0; -1).
Cho elip (E) có phương trình chính tắc: +=1. Viết phương trình đường thẳng song song với Oy cắt (E) tại hai điểm A, B sao cho AB=4
Trong mặt phẳng với hệ trục Oxy, cho điểm E( 3; -1) và đường tròn ( C ): x2 + y2 + 2x +8y + 14 =0.Viết phương trình đường tròn (S) có tâm E và cắt đường tròn ( C ) theo một dây cung có độ dài bằng √3.
Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có đường cao AH: x + y -4 = 0, phân giác trong CD: x + 3y + 2 = 0, cạnh AC đi qua M(0 ;- 14). Tìm tọa độ 3 đỉnh của tam giác đã cho biết rằng tam giác đã cho có diện tích bằng 16.