Cho điểm M(0;2) và hypebol (H): -=1.Lấp phương trình đường thẳng (d) đi qua điểm M cắt (H) tại hai điểm phân biệt A,B sao cho =
Cho hai điểm A(3; 2) và B(4; 0). Viết phương trình đường thẳng d đi qua A và cắt cạnh OB tại M sao cho tỉ số diện tích hai tam giác AOM và ABM bằng 3.
Cho tam giác ABC cân nội tiếp đường tròn tâm J bán kính R = 2a (a > 0). Góc = 120°. Trên đường thẳng vuông góc với mặt phẳng (ABC) lấy điểm S sao cho SA = a√3. Gọi I là trung điểm BC. Tính góc giữa SI và hình chiếu của nó trên mặt phẳng (ABC) và tính bán kính mặt cầu ngoại tiếp tứ dieejnSABC theo a.
Cho đường tròn (C) có bán kính R = 1, tiếp xúc với đường thẳng (d). Tính thể tích của vật thể tròn xoay được sinh ra khi miền hình tròn quay quanh (d) một vòng.
Trong mặt phẳng Oxy cho 3 đường thẳng d1:x+y-2=0, d2:2x-y+3=0, d3:3x-y-5=0. Tìm độ dài các đỉnh hình vuông ABCD, biêt rằng A,C∈d1, B∈d2, D∈d3
Trong mặt phẳng (P) cho đường tròn ( C ) tâm O, đường kính AB = 2R; M là một điểm di động tren ( C ); H là chân đường vuông góc của M trên AB. Đặt AH = x. Trên đường thẳng vuông góc với ( P ) tại M lấy điểm S sao cho SM = MH. Tìm tâm và tính bán kính mặt cầu ngoại tiếp tứ diện S. ABM theo x, R.
Trong mặt phẳng Oxy, cho điểm A(2; 10) và đường thẳng d: y = 8. Điểm E di động trên d. Trên đường thẳng đi qua hai điểm A và E, lấy điểm F sao cho . Điểm F chạy trên đường cong nào? Viết phương trình đường cong đó.
Trong mặt phẳng Oxy cho đường thẳng d: y – 3 = 0 và A(1;1). Tìm điểm C trên trục hoành và điểm B trên d sao cho ∆ABC đều.
Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 + 4√3x – 4 = 0. Cho điểm A(2√3 ; 0 ). Đường tròn ( C’ ) di động nhưng luôn luôn qua điểm A và tiếp xúc với đường tròn ( C ). Chứng minh các tâm của các đường tròn ( C’ ) luôn luôn nằm trên một hypebol cố định. Viết phương trình hypebol đó.
Trong mặt pẳng với hệ trục Oxy cho đường tròn: ( C1 ): x2 + y2 -2x + 4y + 2 = 0. Viết phương trình đường tròn ( C2 ) tâm K(5 ; 1) biết đường tròn ( C2 ) cắt đường tròn ( C1 ) tại hai điểm M, N sao cho MN = √5.
Cho hai đường thẳng: d1: x + y – 2 = 0; d2 : 2x – y – 1 = 0. Viết phương trình đường thẳng ∆ đối xứng với d1 qua d2.
Cho họ đường tròn ( Cm) có phương trình: x2 + y2 – 2mx – 2(m + 1)y – 12 = 0. a)Tìm quỹ tích tâm của họ đường tròn trên. b)Với giá trị nào của m thì bán kính của họ đường tròn bé nhất.
Trên các cạnh AB; BC; CD; DA có hình vuông ABCD lần lượt lấy 1, 2, 3, n điểm phân biệt khác A, B, C, D (n ≥ 3). Tìm n biết sô tam giác có 3 đỉnh lấy từ n + 6 điểm đã chọn là 439.
Trong mặt phẳng Oxy cho điểm I ( -2; 0 ) và hai đương thẳng: d1: 2x- y + 5 = 0; d2: x + y – 3 = 0. Viết phương trình đường thẳng d đi qua I và cắt d1, d2 lần lượt ở A, B sao cho : = 2.
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, khoảng cách từ tâm I của tam giác ABC đến mặt phẳng (A’BC) bằng . Tính thể tích của hình lăng trụ ABC.A’B’C’ theo a.