Skip to main content

Bây giờ cho điểm A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng bán kính đường tròn ngoại tiếp tam giác AED không đổi.

Bây giờ cho điểm A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng bán kính

Câu hỏi

Nhận biết

Bây giờ cho điểm A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng bán kính đường tròn ngoại tiếp tam giác AED không đổi.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Vì KB = KC nên OK ┴ BC. Gọi giao điểm của BD với CE là H, ta có H là trực tâm của tam giác ABC, do đó AH ┴ BC.

Suy ra AH//OK (cùng ┴ BC)

Mặt khác, \widehat{ADH}=90^{\circ}  nên AH là đường kính, do đó OA // O'K. Vì O'K là đường nối tâm, ED là dây cung nên O'K ┴ ED suy ra O'K // OA (vì cùng ┴ ED)

Vậy AO'KO là hình bình hành (vì O'A // OK; O'K // OA) và O'A = OK không đổi. Vậy bán kính đường tròn ngoại tiếp tam giác ADE không đổi.

Câu hỏi liên quan

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm b để A =

    Tìm b để A = frac{5}{2}