Skip to main content

B = \sqrt{\frac{b^{2}}{25-10b+b^{2}}}   với a > 0, b > 0.

B =    với a > 0, b > 0.

Câu hỏi

Nhận biết

B = \sqrt{\frac{b^{2}}{25-10b+b^{2}}}   với a > 0, b > 0.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

B = \sqrt{\frac{b^{2}}{25-10b+b^{2}}} = \sqrt{\frac{b^{2}}{(5-b)^{2}}} = \frac{|b|}{|5-b|}  (điều kiện b ≠ 5)

Xảy ra 3 trường hợp như sau:

+) Nếu b < 0 thì B =  \frac{-b}{5-b}

+) Nếu 0 ≤ b < 5 thì B = \frac{b}{5-b}

+) Nếu b > 5 thì B = \frac{b}{b-5}

Câu hỏi liên quan

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A