Skip to main content

Trong mặt phẳng Oxy: Cho hai điểm A(2;1), B(-1;-3) và hai đường thẳng d1 : x + y + 3 = 0; d2: x – 5y – 16 = 0 . Tìm tọa độ các điểm C, D lần lượt thuộc d1 và d2 sao cho tứ giác ABCD là hình bình hành.

Trong mặt phẳng Oxy:
Cho hai điểm A(2;1), B(-1;-3) và hai đường thẳn

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy:
Cho hai điểm A(2;1), B(-1;-3) và hai đường thẳng d1 : x + y + 3 = 0; d2: x – 5y – 16 = 0 . Tìm tọa độ các điểm C, D lần lượt thuộc d1 và d2 sao cho tứ giác ABCD là hình bình hành.


A.
C(3; -6) và D(6; - 2)
B.
C(3; 6) và D(6; - 2)
C.
C(3; -6) và D(6;  2)
D.
C(3; 6) và D(6; 2)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Giả sử ABCD là hình bình hành, ta có \overrightarrow{CD} =\overrightarrow{BA} = (3;4) ⇔ \left\{\begin{matrix}x_{D}-x_{C}=3\\y_{D}-y_{C}=4\end{matrix}\right.

Vì D ∈d2 nên xD – 5yD – 16 = 0=>(xC + 3) – 5(yC + 4) = 16

Vì C ∈ d1, nên xC + yC + 3 = 0.

Từ đó ta có hệ phương trình \left\{\begin{matrix}x_{C}-5y_{C}=33\\x_{C}+y_{C}=-3\end{matrix}\right.\left\{\begin{matrix}x_{C}=3\\y_{C}=-6\end{matrix}\right.=>\left\{\begin{matrix}x_{D}=6\\y_{D}=-2\end{matrix}\right.

Ta có:\overrightarrow{BA}= (3;4) và \overrightarrow{BC}= (4;-3) nên hai vectơ \overrightarrow{BA}, \overrightarrow{BC}không cùng phương tức là bốn điểm A, B, C, D không thẳng hàng, hay tứ giác ABCD là hình bình hành.

Đáp số: C(3; -6) và D(6; - 2)

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.