Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2;1) và AC=2BD. Điểm M(0;\frac{1}{3}) thuộc đường thẳng AB, điểm N(0;7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B biết B có hoành độ dương

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2;1) và A

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2;1) và AC=2BD. Điểm M(0;\frac{1}{3}) thuộc đường thẳng AB, điểm N(0;7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B biết B có hoành độ dương


A.
B(1;-1)
B.
B(1;-3)
C.
B(0;1)
D.
B(2;2)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi N' là điểm đối xứng với N qua I thì N' thuộc AB, ta có:

\left\{\begin{matrix} x_{N'}=2x_{I}-x_{N}=4\\y_{N'}=2y_{I}-y_{N}=-5 \end{matrix}\right.

Phương trình đường thẳng AB: 4x+3y-1=0

Khoảng cách từ I đến đường thẳng AB:

d=\frac{|4.2+3.1-1|}{\sqrt{4^{2}+3^{2}}}=2

AC=2. BD nên AI=2BI, đặt BI=x, AI=2x trong tam giác vuông ABI có:

\frac{1}{d^{2}}=\frac{1}{x^{2}}+\frac{1}{4x^{2}} suy ra x=\sqrt{5} suy ra BI=\sqrt{5}

Điểm B là giao điểm của đường thẳng 4x+3y-1=0 với đường tròn tâm I bán kính \sqrt{5}

Tọa độ B là nghiệm của hệ: \left\{\begin{matrix} 4x+3y-1=0\\(x-2)^{2}+(y-1)^{2}=5 \end{matrix}\right.

B có hoành độ dương nên B(1;-1)

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).