Skip to main content

Cho các số dương x,y,z thỏa mãn: x(x-1)+y(y-1)+z(z-1)≤\frac{4}{3} Tìm các giá trị nhỏ nhất của: A=\frac{1}{x+1}+\frac{1}{y.+1}+\frac{1}{z+1} dấu "=" xảy ra khi:

Cho các số dương x,y,z thỏa mãn: x(x-1)+y(y-1)+z(z-1)≤

Câu hỏi

Nhận biết

Cho các số dương x,y,z thỏa mãn: x(x-1)+y(y-1)+z(z-1)≤\frac{4}{3} Tìm các giá trị nhỏ nhất của: A=\frac{1}{x+1}+\frac{1}{y.+1}+\frac{1}{z+1} dấu "=" xảy ra khi:


A.
x=y=z=\frac{1}{3}
B.
x=y=z=\frac{1}{2}
C.
x=y=z=4
D.
x=y=z=\frac{4}{3}
Đáp án đúng: D

Lời giải của Luyện Tập 365

32=(\sqrt{x+1}.\frac{1}{\sqrt{x+1}}+\sqrt{y+1}.\frac{1}{\sqrt{y+1}} +\sqrt{z+1}.\frac{1}{\sqrt{z+1}})^{2} 

≤ A(x+y+z+3)

=> A≥ \frac{9}{x+y+z+3}. Mặt khác giả thiết <=> x2+y2+z2-(x+y+z)≤\frac{4}{3}

Dễ dàng chứng minh được  x2+y2+z2 ≥ \frac{1}{3}(x+y+z)2 nên nếu ta đặt t=x+y+z thì

\frac{1}{3}t2-t≤\frac{4}{3} <=> 0<t≤4 (vì x,y,z dương).

Hơn nữa hàm số y=\frac{1}{t+3} nghịch biến nên A≥\frac{9}{4+3}=\frac{9}{7}. Dấu "=" xảy ra khi và chỉ khi \left\{\begin{matrix} x+y+z=4\\x+1=y+1=z+1 \end{matrix}\right. <=> x=y=z=\frac{4}{3}

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1