Skip to main content

Cho hình chữ nhật ABCD có trung điểm AB là M(4;6). Giao điểm I của hai đường chéo nằm trên đường thẳng d: 3x – 5y + 6 = 0, điểm N(6;2) thuộc cạnh CD. Hãy viết phương trình cạnh CD biết tung độ I lớn hơn 4.

Cho hình chữ nhật ABCD có trung điểm AB là M(4;6). Giao điểm I của hai đ

Câu hỏi

Nhận biết

Cho hình chữ nhật ABCD có trung điểm AB là M(4;6). Giao điểm I của hai đường chéo nằm trên đường thẳng d: 3x – 5y + 6 = 0, điểm N(6;2) thuộc cạnh CD. Hãy viết phương trình cạnh CD biết tung độ I lớn hơn 4.


A.
Phương trình CD : - x – y – 4 = 0
B.
Phương trình CD : x – y + 4 = 0
C.
Phương trình CD : x + y – 4 = 0
D.
Phương trình CD : x – y – 4 = 0
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi (xP, yP) đối xứng M(4;6) qua I thì I là trung điểm MP nên \left\{\begin{matrix}4+x_{P}=2x_{1}\\6+y_{P}=2y_{1}\end{matrix}\right.

I thuộc d nên \frac{3(4+x_{P})}{2} -  \frac{5(6+y_{P})}{2} + 6  = 0 nên 3xP – 5yP – 6 = 0  (1). Ta lại có PM⊥PN => \overrightarrow{MP}.\overrightarrow{NP}= 0 hay (xP – 4)(yP – 6 ) + (yP – 6)(yP – 1) = 0 (2).

Từ (1) và (2) ta thu được 34yP2 – 162yP + 180 = 0 do đó yP = 3 hoặc yP =\frac{30}{17}

Khi yP = 3 thì xP = 7 phương trình CD : x – y – 4 = 0

Khi yP  =  \frac{30}{17} thì tung độ I nhỏ hơn 4 nên loại

 ­

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx