Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có đỉnh A(3;5). Phương trình đường phân giác BP và đường trung tuyến CM lần lượt là x – y = 0 và – 5y + 13 = 0. Tìm tọa độ đỉnh C và diện tích tam giác ABC.

Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có đỉnh A(3;5). Phươn

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có đỉnh A(3;5). Phương trình đường phân giác BP và đường trung tuyến CM lần lượt là x – y = 0 và – 5y + 13 = 0. Tìm tọa độ đỉnh C và diện tích tam giác ABC.


A.
Diện tích S = 9.
B.
Diện tích S = 6.
C.
Diện tích S = 8.
D.
Diện tích S = 7.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi B(b, b ) → M(b + 3)/2, ( b + 5) ∈ CM: x – 5y + 13 = 0 → b = 1 → B(1;1). Gọi D là dx của A qua đường thẳng BP. Phương trình AD: x + y – 8 = 0. Giao điểm AD và BP là I(4;4) nên D(5;3). Phương trình  BC ≡ BD: x – 2y + 1 = 0. Giao điểm BC và CM là C(7,4). Đoạn BC = 3√5, AH = \frac{6}{\sqrt{5}}  

Vậy diện tích S = 9.

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.