Skip to main content

Cho \overrightarrow{v}=(3;1) và đường thẳng d: y=2x+4. Tìm ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k=\frac{1}{2} và phép tịnh tiến theo vecto \overrightarrow{v}.

Cho  và đường thẳng d: y=2x+4. Tìm ảnh của d qua phép đồng dạng có được bằng cách thực

Câu hỏi

Nhận biết

Cho \overrightarrow{v}=(3;1) và đường thẳng d: y=2x+4. Tìm ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k=\frac{1}{2} và phép tịnh tiến theo vecto \overrightarrow{v}.


Đáp án đúng:

Lời giải của Luyện Tập 365

Lấy A(0;4)\in d

V_{(0;\frac{1}{2})}(A)=(A_{1}) =>\overrightarrow{OA_{1}}=\frac{1}{2}\overrightarrow{OA}=(0;2);T_{\overrightarrow{v}}(A_{1})=A'(3;3)

V_{(0;\frac{1}{2})}(d)=(d_{1})\Rightarrow d//d_{1},T_{\overrightarrow{v}}(d_{1})=d'\Rightarrow d_{1}//d'\Rightarrow d'//d

Phương trình d' có dạng : y=2x+b

Do A'\in d' nên : 3=6+b <=> b=-3

Phương trình đường thẳng (d'): y=2x-3

Câu hỏi liên quan

  • Có bao nhiêu cách sắp xếp 5 bạn học sinh A, B, C, D, E ngồi vào một chiếc ghế dài sao cho:

    Có bao nhiêu cách sắp xếp 5 bạn học sinh A, B, C, D, E ngồi vào một chiếc ghế dài sao cho:

          a.  Bạn C ngồi chính giữa?

          b.  Hai bạn A và E ngồi ở hai đầu ghế?

  • Gieo một con súc sắc cân đối đồng chất hai lần. Tính xác suất của biến cố:
    

    Gieo một con súc sắc cân đối đồng chất hai lần. Tính xác suất của biến cố:

         a) Tổng số chấm hai mặt xuất hiện bằng 8.

         b) Tích số chấm hai mặt xuất hiện là số lẻ.

  • Cho  và đường thẳng d: y=2x+2  Tìm ảnh của d qua phép đồng dạng có được bằng

     Cho \overrightarrow{v}=(3;1) và đường thẳng d: y=2x+2  Tìm ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k=\frac{1}{2}  và phép tịnh tiến theo vectơ .

  • Gieo hai con súc sắc cân đối đồng chất. Tính xác suất của biến cố:
a) Tổng số chấm hai mặt

    Gieo hai con súc sắc cân đối đồng chất. Tính xác suất của biến cố:

    a) Tổng số chấm hai mặt xuất hiện bằng 7.

    b) Các mặt xuất hiện có số chấm bằng nhau.

  • bai 3 de 2 HK1  minh khai ha tinh 13-14

    bai 3 de 2 HK1  minh khai ha tinh 13-14