Cho a, b, c, d là các số thực dương. Chứng minh rằng:
Ta có kết quả sau: cho x, y, z, t là các số thực dương, khi đó
Ta có
<=>
<=> [(b+c+d)+(a+c+d)+(a+b+d)+(a+b+c)].
đúng theo (*) => Bất đẳng thức đã cho đúng.
cơ bản
Tìm miền xác định của hàm số sau:
Phần nâng cao
Cho góc thỏa mãn .. Tính các giá trị lượng giác còn lại của
Cho góc thỏa mãn . Tính các giá trị lượng giác của
Xác định hàm số bậc hai biết rằng đồ thị của nó có hoành độ đỉnh là 2 và đị qua điểm M(1;-2)
. Cho tam giác ABC với A(-1;2);B(-2;5);C(0;-3).
a) Tính tọa độ trọng tâm G của tam giác ABC.
b) Tìm tọa độ điểm D sao cho tứ giác ADBC là hình bình hành
BAN NÂNG CAO