Skip to main content

Từ tập hợp A = {0,1,2,3,4,5,6} lập được bao nhiêu số tự nhiên chia hết cho 5, gồm 5 chữ số đôi một khác nhau sao cho trong đó luôn có mặt các chữ số 1,2,3 và chúng đứng cạnh nhau.

Từ tập hợp A = {0,1,2,3,4,5,6} lập được bao nhiêu số tự nhiên chia hết c

Câu hỏi

Nhận biết

Từ tập hợp A = {0,1,2,3,4,5,6} lập được bao nhiêu số tự nhiên chia hết cho 5, gồm 5 chữ số đôi một khác nhau sao cho trong đó luôn có mặt các chữ số 1,2,3 và chúng đứng cạnh nhau.


A.
65
B.
66
C.
63
D.
54
Đáp án đúng: B

Lời giải của Luyện Tập 365

Giả sử số lập được là \overline{abcde}(a,b,c,d,e thuộc A và đôi một khác nhau)

Xét hai trường hợp \overline{abcde} chia hết cho 5.

TH1: e = 0 

Ghép các chữ số 1,2,3 đứng liền nhau, có 3! = 6 cách.

Chọn thêm một chữ số từ {4,5,6}, có 3 cách. Sắp xếp bộ 1,2,3 và số vừa chọn, có 2! cách. Suy ra trường hợp này có 6.3.2=36 số.

TH2: e=5.

Ghép các chữ số 1,2,3 đứng liền nhau, có 3! = 6 cách.

Chọn thêm một chữ số từ {0,4,6}. Có 2 khả năng:

KN1: Số được chọn là số 0. Khi đó d=0. Suy ra có 6 số.

KN2: Số được chọn là số 4 hoặc 6. Khi đó số các số là 6.2.2! = 24.

Suy ra trường hợp này có 6 + 24 = 30 số. Vậy có 36 + 30 = 66 số. 

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.