Skip to main content

Cho tam giác ABC cân nội tiếp đường tròn tâm J bán kính R = 2a (a > 0). Góc \widehat{BAC} = 120°. Trên đường thẳng vuông góc với mặt phẳng (ABC) lấy điểm S sao cho SA = a√3. Gọi I là trung điểm BC. Tính góc giữa SI và hình chiếu của nó trên mặt phẳng (ABC) và tính bán kính mặt cầu ngoại  tiếp tứ dieejnSABC theo a.

Cho tam giác ABC cân nội tiếp đường tròn tâm J bán kính R = 2a (a > 0

Câu hỏi

Nhận biết

Cho tam giác ABC cân nội tiếp đường tròn tâm J bán kính R = 2a (a > 0). Góc \widehat{BAC} = 120°. Trên đường thẳng vuông góc với mặt phẳng (ABC) lấy điểm S sao cho SA = a√3. Gọi I là trung điểm BC. Tính góc giữa SI và hình chiếu của nó trên mặt phẳng (ABC) và tính bán kính mặt cầu ngoại  tiếp tứ dieejnSABC theo a.


A.
OB = \frac{a\sqrt{19}}{2}
B.
OA = \frac{a\sqrt{19}}{5}
C.
OB = \frac{a\sqrt{19}}{2}
D.
OA = \frac{a\sqrt{19}}{2}
Đáp án đúng:

Lời giải của Luyện Tập 365

Gọi I là trung điểm của BC

  => AI ⊥ BC => SI ⊥ BC.

Ta có AI là hình chiếu vuong góc của SI trên mặt phẳng (ABC).

Vậy góc giữa SI là hình chiếu của nó trên (ABC) là góc \widehat{SIA} 

Tam giác ABC: BC = 2R sin A (định lý sin).

Mà R = 2a; \widehat{BAC} = 120°

=> BC = 2R. sin 120° = 4a. \frac{\sqrt{3}}{2} = 2a√3

Tìm được: BC = 2a√3;

Lại có: I là trung điểm của BC nên BI = a√3;

Trong ∆SAI: 

                tan \widehat{SIA} = \frac{SA}{AI} = \frac{a\sqrt{3}}{a} => \widehat{SIA} = 60°

∆ABI => AI = BI. cot \widehat{BAI} = a√3. \frac{1}{\sqrt{3}} = a

Ta đã biết tâm mặt cầu ngoiaj tiếp SABC nằm trên trục của tam giác ABC ( đường thẳng vuông góc với mặt phẳng (ABC) tại tâm đường tròn ngoiaj tiếp tam giác ABC). Ở đây do tam giác ABC cân nên đường tròn ngoiaj tiếp của nó nằm trên AI, lại do bán kính của đường tròn đó R = 2a. Do đó tâm đường tròn ngoiaj tiếp tam giác ABC là J với Ạ = 2a ( như hình vẽ). Trục của tam giác ABC là đường thẳng Jt. Trong mặt phẳng (SAJ) dựng đường trung trực của SA cắt Jt tại O thì O chính là tâm cầu ngoại tiếp SABC. Bán kính cầu chính là OA. Xét tam giác AOJ có:

     OA2 = OJ2 + JA2 = ( \frac{a\sqrt{3}}{2}  )2 + (2a)2 =  \frac{19a^{2}}{4}

=> OA = \frac{a\sqrt{19}}{2}

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).