Skip to main content

\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}}   (b > 0 và a  ≠ - √b)

 (b > 0 và a  ≠ - √b)

Câu hỏi

Nhận biết

\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}}   (b > 0 và a  ≠ - √b)


A.
\frac{a^{2}+b}{b}
B.
\frac{a^{2}-b}{b}
C.
\frac{a^{2}-b^{2}}{b}
D.
\frac{a^{2}+b^{2}}{b}
Đáp án đúng: B

Lời giải của Luyện Tập 365

\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}} = \frac{(a-\sqrt{b})(a+\sqrt{b})}{(\sqrt{b})^{2}}=\frac{a^{2}-b}{b}

Câu hỏi liên quan

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Rút gọn A

    Rút gọn A

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha