Skip to main content

Hai đường thẳng cắt nhau

Hai đường thẳng cắt nhau

Câu hỏi

Nhận biết

Hai đường thẳng cắt nhau


A.
m ≠ -3 và m ≠ -2
B.
m ≠ -3 và m ≠ -4
C.
m ≠ -1 và m ≠ -2
D.
m ≠ -2 và m ≠ -4
Đáp án đúng: B

Lời giải của Luyện Tập 365

Để hàm số  y = (m+3)x + 4 là hàm số bậc nhất thì m + 3 ≠ 0 suy ra m ≠ -3.

Đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau <=> a ≠ a’

<=> -1 ≠ m + 3     <=> m ≠ -4

Vậy với m ≠ -3 và m ≠ -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau.

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5