Skip to main content

Cho b > a > 0. Xét biểu thức: P=\frac{\sqrt{a^{3}}-\sqrt{b^{3}}}{a-b}-\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{b}{\sqrt{b}-\sqrt{a}} Trả lời câu hỏi dưới đây:Biết (a-1)(b-1)+2\sqrt{ab}=1  , hãy tính giá trị của biểu thức P.

Cho b > a > 0. Xét biểu thức:
            Trả lời câu hỏi dưới đây:Biết   , hãy

Câu hỏi

Nhận biết

Cho b > a > 0. Xét biểu thức:

P=\frac{\sqrt{a^{3}}-\sqrt{b^{3}}}{a-b}-\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{b}{\sqrt{b}-\sqrt{a}}

Trả lời câu hỏi dưới đây:

Biết (a-1)(b-1)+2\sqrt{ab}=1  , hãy tính giá trị của biểu thức P.


A.
P = -1
B.
P = 1
C.
P = -2
D.
P = 2
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có:

(a-1)(b-1)+2\sqrt{ab}=1 

=> ab=a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^{2}

Vì a < b nên \sqrt{ab}=\sqrt{b}-\sqrt{a}

Vậy P = -1

Câu hỏi liên quan

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .