Skip to main content

Rút gọn các biểu thức sau: Trả lời câu hỏi dưới đây:A=\frac{1}{2}\sqrt{20}-\sqrt{80}+\frac{2}{3}\sqrt{45}

Rút gọn các biểu thức sau:            Trả lời câu hỏi dưới đây:

Câu hỏi

Nhận biết

Rút gọn các biểu thức sau:

Trả lời câu hỏi dưới đây:

A=\frac{1}{2}\sqrt{20}-\sqrt{80}+\frac{2}{3}\sqrt{45}


A.
A=\sqrt{5}
B.
A=-\sqrt{5}
C.
A=\frac{1}{2}\sqrt{5}
D.
A=2\sqrt{5}
Đáp án đúng: B

Lời giải của Luyện Tập 365

A=\frac{1}{2}\sqrt{4.5}-\sqrt{16.5}+\frac{2}{3}\sqrt{9.5}

    =\sqrt{5}-4\sqrt{5}+2\sqrt{5}=-\sqrt{5}

Câu hỏi liên quan

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm b để A =

    Tìm b để A = frac{5}{2}