Skip to main content

Một hộp chứa 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên ra 2 viên bi. Tính xác suất để lấy được 2 viên bi khác màu.

Một hộp chứa 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên ra 2 viên bi.

Câu hỏi

Nhận biết

Một hộp chứa 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên ra 2 viên bi. Tính xác suất để lấy được 2 viên bi khác màu.


A.
P =  \frac{3}{18} 
B.
P =  \frac{1}{18} 
C.
P =  \frac{15}{18} 
D.
P =  \frac{13}{18} 
Đáp án đúng: D

Lời giải của Luyện Tập 365

Số cách chọn ra 2 viên bi tùy ý │Ω│= C92 = 36 

 

Số cách chọn ra 2 viên bi gồm 1 bi xanh và 1 bi đỏ C14. C13 = 12

Số cách chọn ra 2 viên bi gồm 1 bi xanh và 1 bi vàng C14. C12 = 8

Số cách chọn ra 2 viên bi gồm 1 bi vàng và 1 bi đỏ C12. C13 = 6

Suy ra số cách chon ra 2 bi khác màu 26 

Vậy, xác suất chọn được hai viên khác màu P = \frac{26}{36} = \frac{13}{18} 

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.