Skip to main content

Cho x, y là hai số thực thoả mãn: (x + y)2 + 7(x + y) + y2 + 10 = 0 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = x + y + 1

Cho x, y là hai số thực thoả mãn: (x + y)2 + 7(x + y) + y2 + 10 = 0
Tìm giá trị lớn nhất

Câu hỏi

Nhận biết

Cho x, y là hai số thực thoả mãn: (x + y)2 + 7(x + y) + y2 + 10 = 0

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = x + y + 1


A.
min A = 1 và max A = 4
B.
min A = 0 và max A = 4
C.
min A = -4 và max A = 0
D.
min A = -4 và max A = -1
Đáp án đúng: D

Lời giải của Luyện Tập 365

Từ giả thiết: (x + y)2 + 7(x + y) + y2 + 10 = 0

=> (x+y)^{2}+2.(x+y).\frac{7}{2}+(\frac{7}{2})^{2}-(\frac{7}{2})^{2}+10=-y^{2}  ≤ 0

     (x+y+\frac{7}{2})^{2}-\frac{9}{4}  ≤ 0   => (x+y+\frac{7}{2})^{2}  ≤ \frac{9}{4}

Giải ra được - 4 ≤ x + y + 1 ≤ - 1.

A = -1 khi x = - 2 và y = 0,  A = - 4 khi x = -5 và y = 0.

Vậy giá trị nhỏ nhất của A là - 4 và giá trị lớn nhất của A là - 1.

 

Câu hỏi liên quan

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Rút gọn A

    Rút gọn A

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.