Skip to main content

Tính: \frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}

Tính:

Câu hỏi

Nhận biết

Tính: \frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}


A.
1
B.
2
C.
3
D.
5
Đáp án đúng: A

Lời giải của Luyện Tập 365

\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}=\frac{3+\sqrt{5}}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}-1}{(\sqrt{5}+1)(\sqrt{5}-1)}

=\frac{3+\sqrt{5}}{9-5}-\frac{\sqrt{5}-1}{5-1}=\frac{(3+\sqrt{5})-(\sqrt{5}-1)}{4}=1

Câu hỏi liên quan

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Rút gọn A

    Rút gọn A

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm b để A =

    Tìm b để A = frac{5}{2}