Skip to main content

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh: ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ).

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:
ab + bc + ca ≤ a2 + b2 + c2 <

Câu hỏi

Nhận biết

Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:

ab + bc + ca ≤ a2 + b2 + c2 < 2(ab + bc + ca ).


A.
Click để xem lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: (a – b)2 + (b – c)2 + (c – a)2 ≥ 0

<=>  2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

<=>  a2 + b2 + c2 ≥ ab + bc + ca   (1)

Vì a, b, c là độ dài 3 cạnh của một tam giác nên ta có: a2 < a.(b+ c)

=> a2 < ab + ac.

 Tương tự: b2 < ab + bc; c2 < ca + bc. Suy ra: a2 + b2 + c2 < 2(ab + bc + ca)   (2).

Từ (1) và (2) suy ra điều phải chứng minh.

Câu hỏi liên quan

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Rút gọn A

    Rút gọn A

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.