Skip to main content

Cho một tháp số (gồm 20 ô vuông giống nhau) như hình vẽ. Mỗi ô vuông được ghi một số nguyên dương n với 1 ≤ n ≤ 20, hai ô vuông bất kì không được ghi cùng một số. Ta quy định trong tháp số này 2 ô vuông kề nhau là 2 ô vuông có chung cạnh. Hỏi có thể có cách ghi nào thỏa mãn điều kiện: Chọn một ô vuông bất kì (khác với các ô vuông được đặt tên a, b, c, d, e, f, g, h như hình vẽ) thì tổng các số được ghi trong ô đó và các số được ghi trong 3 ô vuông kề với nó chia hết cho 4?

Cho một tháp số (gồm 20 ô vuông giống nhau) như hình vẽ. Mỗi ô vuông được ghi một số nguyên

Câu hỏi

Nhận biết

Cho một tháp số (gồm 20 ô vuông giống nhau) như hình vẽ. Mỗi ô vuông được ghi một số nguyên dương n với 1 ≤ n ≤ 20, hai ô vuông bất kì không được ghi cùng một số. Ta quy định trong tháp số này 2 ô vuông kề nhau là 2 ô vuông có chung cạnh. Hỏi có thể có cách ghi nào thỏa mãn điều kiện: Chọn một ô vuông bất kì (khác với các ô vuông được đặt tên a, b, c, d, e, f, g, h như hình vẽ) thì tổng các số được ghi trong ô đó và các số được ghi trong 3 ô vuông kề với nó chia hết cho 4?


A.
Có 1 cách
B.
Có 2 cách
C.
Có vô số cách
D.
Không có cách nào.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Câu hỏi liên quan

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Rút gọn A

    Rút gọn A

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K