Skip to main content

Trong mặt phẳng Oxy cho điểm I ( -2; 0 ) và hai đương thẳng: d1: 2x- y + 5 = 0; d2: x + y – 3 = 0. Viết phương trình đường thẳng d đi qua I và cắt d1, d2 lần lượt ở A, B sao cho : \overrightarrow{IA} = 2\overrightarrow{IB}.

Trong mặt phẳng Oxy cho điểm I ( -2; 0 ) và hai đương thẳng: d1

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy cho điểm I ( -2; 0 ) và hai đương thẳng: d1: 2x- y + 5 = 0; d2: x + y – 3 = 0. Viết phương trình đường thẳng d đi qua I và cắt d1, d2 lần lượt ở A, B sao cho : \overrightarrow{IA} = 2\overrightarrow{IB}.


A.
-7x -3y + 14 = 0
B.
7x +3y + 14 = 0
C.
7x -3y - 14 = 0
D.
7x -3y + 14 = 0
Đáp án đúng: D

Lời giải của Luyện Tập 365

A∈d1 => A(xa;2xa + 5), B ∈d2 => B(xb; 3 – xb)

\overrightarrow{IA}= (xa + 2;2xa + 5); \overrightarrow{IB}= (xb + 2; 3 – xb). Khi đó \overrightarrow{IA} = 2\overrightarrow{IB}

\left\{\begin{matrix}x_{a}+2=2x_{b}+4\\2x_{a}+5=6-2x_{b}\end{matrix}\right.  ⇔ \left\{\begin{matrix}x_{a}-2x_{b}=2\\2x_{a}+2x_{b}=1\end{matrix}\right.

\left\{\begin{matrix}x_{a}=1\\x_{b}=-\frac{1}{2}\end{matrix}\right.=>\left\{\begin{matrix}y_{a}=7\\y_{b}=\frac{7}{2}\end{matrix}\right.

Phương trình đường thẳng qua AB là:

\frac{x-1}{-\frac{1}{2}-1}\frac{y-7}{\frac{7}{2}-7} ⇔ \frac{x-1}{-3}\frac{y-7}{-7} ⇔ 7x -3y + 14 = 0

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.