Skip to main content

Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó . Vẽ đường tròn tâm E tiếp xúc với đường tròn (O) ở M và tiếp xúc với đường kính AB ở N. Đường tròn (E) cắt MA, MB lần lượt ở C và D. Trả lời câu hỏi dưới đây:Chứng minh tích  KM.KN không đổi.

Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó

Câu hỏi

Nhận biết

Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó . Vẽ đường tròn tâm E tiếp xúc với đường tròn (O) ở M và tiếp xúc với đường kính AB ở N. Đường tròn (E) cắt MA, MB lần lượt ở C và D.

Trả lời câu hỏi dưới đây:

Chứng minh tích  KM.KN không đổi.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

∆ AMK ~ ∆ NAK (g.g), do đó  \frac{AK}{NK}=\frac{MK}{AK} 

=> MK.NK = AK2 không đổi

Câu hỏi liên quan

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên