Skip to main content

Cho đường tròn (A; 5 cm) và một điểm B cách A một khoảng AB = 8 cm. Từ B kẻ tiếp tuyến BT và cát tuyến BNM (N nằm giữa B và M). Gọi H là hình chiếu của T trên AB. Trả lời câu hỏi dưới đây:Chứng minh rằng hai tam giác ABM và NHB đồng dạng từ đó suy ra tứ giác AHMN nội tiếp được.

Cho đường tròn (A; 5 cm) và một điểm B cách A một khoảng AB = 8 cm. Từ B kẻ tiếp tuyến BT

Câu hỏi

Nhận biết

Cho đường tròn (A; 5 cm) và một điểm B cách A một khoảng AB = 8 cm. Từ B kẻ tiếp tuyến BT và cát tuyến BNM (N nằm giữa B và M). Gọi H là hình chiếu của T trên AB.

Trả lời câu hỏi dưới đây:

Chứng minh rằng hai tam giác ABM và NHB đồng dạng từ đó suy ra tứ giác AHMN nội tiếp được.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

∆ ABM và ∆ NHB có \widehat{B} chung , từ hệ thức (*) suy ra \frac{AB}{NB}=\frac{BM}{BH}

Vậy ∆ ABM ~ ∆ NBH  (t.h 2)  => \widehat{HNB}=\widehat{MAB}

Vậy tứ giác AHMN nội tiếp.

Câu hỏi liên quan

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Rút gọn A

    Rút gọn A

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2