Skip to main content

Cho đường tròn (O) đường kính AB = 2R. Trên tia đối của tia BA lấy điểm C sao cho BC = R, trên đường tròn lấy điểm D sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD ở M. Trả lời câu hỏi dưới đây:Chứng minh ∆ ADB ~ ∆ ACM . Từ đó tính tích AM.AD theo R.

Cho đường tròn (O) đường kính AB = 2R. Trên tia đối của tia BA lấy điểm C sao cho BC = R,

Câu hỏi

Nhận biết

Cho đường tròn (O) đường kính AB = 2R. Trên tia đối của tia BA lấy điểm C sao cho BC = R, trên đường tròn lấy điểm D sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD ở M.

Trả lời câu hỏi dưới đây:

Chứng minh ∆ ADB ~ ∆ ACM . Từ đó tính tích AM.AD theo R.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

∆ ABD ~ ∆ AMC (g.g) nên \frac{AB}{AM}=\frac{AD}{AC}  , suy ra  AM.AD = AB.AC = 6R2

Câu hỏi liên quan

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Rút gọn A

    Rút gọn A

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k