Skip to main content

Gọi I là tâm đường tròn nội tiếp ∆ APB. Chứng minh bốn điểm I, A, Q, B cùng thuộc một đường tròn

Gọi I là tâm đường tròn nội tiếp ∆ APB. Chứng minh bốn điểm I, A, Q, B cùng thuộc một đường

Câu hỏi

Nhận biết

Gọi I là tâm đường tròn nội tiếp ∆ APB. Chứng minh bốn điểm I, A, Q, B cùng thuộc một đường tròn


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

\widehat{AIB}=\widehat{AQB}=135^{\circ} . 

Tứ giác AIQB nội tiếp được đường tròn, hay bốn điểm A,I , Q, B cùng thuộc một đường tròn.

Câu hỏi liên quan

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Rút gọn A

    Rút gọn A

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A