Skip to main content

Từ điểm P cố định nằm ngoài đường tròn (O; R) cho trước vẽ tiếp tuyến PA và cát tuyến PBC. Gọi H là trực tâm của tam giác ABC, H1 là điể đối xứng của H qua BC, O1 là điểm đối xứng của O qua BC. Trả lời câu hỏi dưới đây:Chứng minh H1 nằm trên đường tròn (O)

Từ điểm P cố định nằm ngoài đường tròn (O; R) cho trước vẽ tiếp tuyến PA và cát tuyến PBC.

Câu hỏi

Nhận biết

Từ điểm P cố định nằm ngoài đường tròn (O; R) cho trước vẽ tiếp tuyến PA và cát tuyến PBC. Gọi H là trực tâm của tam giác ABC, H1 là điể đối xứng của H qua BC, O1 là điểm đối xứng của O qua BC.

Trả lời câu hỏi dưới đây:

Chứng minh H1 nằm trên đường tròn (O)


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

H_{1}  đối xứng với H qua BC nên \widehat{BCH_{1}}=\widehat{BCH}  mà \widehat{BCH}=\widehat{BAH_{1}}  (góc có cạnh tương ứng vuông góc) suy ra \widehat{BCH_{1}}=\widehat{BAH_{1}}

Tứ giác ABH_{1}C  nội tiếp đường tròn

=> H_{1}  ϵ (O)

Câu hỏi liên quan

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Rút gọn A

    Rút gọn A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .