Skip to main content

Từ điểm P cố định nằm ngoài đường tròn (O; R) cho trước vẽ tiếp tuyến PA và cát tuyến PBC. Gọi H là trực tâm của tam giác ABC, H1 là điể đối xứng của H qua BC, O1 là điểm đối xứng của O qua BC. Trả lời câu hỏi dưới đây:Chứng minh tứ giác OAHO1 là hình bình hành

Từ điểm P cố định nằm ngoài đường tròn (O; R) cho trước vẽ tiếp tuyến PA và cát tuyến PBC.

Câu hỏi

Nhận biết

Từ điểm P cố định nằm ngoài đường tròn (O; R) cho trước vẽ tiếp tuyến PA và cát tuyến PBC. Gọi H là trực tâm của tam giác ABC, H1 là điể đối xứng của H qua BC, O1 là điểm đối xứng của O qua BC.

Trả lời câu hỏi dưới đây:

Chứng minh tứ giác OAHO1 là hình bình hành


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

OO1 // AH vì cùng vuông góc với BC

Gọi K là giao điểm của OO1 với BC thì OO1 = 2 OK mà AH = 2 OK

=>  AH = OO1. Tứ giác AHO1O là hình bình hành.

Câu hỏi liên quan

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.