Skip to main content

Cho hai đường tròn (O) và (O') bán kính khác nhau, cắt nhau tại A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Qua A vẽ hai cát tuyến CAD, EAF (C và E thuộc (O), D và F thuộc (O'), E thuộc cung AC). Trả lời câu hỏi dưới đây:Chứng minh ∆ CBD ~ ∆ EBF

Cho hai đường tròn (O) và (O') bán kính khác nhau, cắt nhau tại A và B (O và O' thuộc hai

Câu hỏi

Nhận biết

Cho hai đường tròn (O) và (O') bán kính khác nhau, cắt nhau tại A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Qua A vẽ hai cát tuyến CAD, EAF (C và E thuộc (O), D và F thuộc (O'), E thuộc cung AC).

Trả lời câu hỏi dưới đây:

Chứng minh ∆ CBD ~ ∆ EBF


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

\widehat{AEB}=\widehat{ACB}  (hai góc nội tiếp cùng chắn cung AB của đường tròn (O)).

\widehat{ADB}=\widehat{AFB}  (hai góc nội tiếp cùng chắn cung AB của đường tròn (O)).

Vậy ∆ CBD ~ ∆ EBF (g.g)

Câu hỏi liên quan

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Rút gọn A

    Rút gọn A