Skip to main content

Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Các đường thẳng AO và AO' cắt đường tròn (O) lần lượt ở C và D, cắt đường tròn (O') lần lượt ở E và F. Trả lời câu hỏi dưới đây:Chứng minh A là tâm đường tròn nội tiếp tam giác BDE

Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A và B (O và O' thuộc hai nửa mặt phẳng

Câu hỏi

Nhận biết

Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Các đường thẳng AO và AO' cắt đường tròn (O) lần lượt ở C và D, cắt đường tròn (O') lần lượt ở E và F.

Trả lời câu hỏi dưới đây:

Chứng minh A là tâm đường tròn nội tiếp tam giác BDE


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

\widehat{ABD}=\widehat{ACD} ; \widehat{ABE}=\widehat{AFE}   nhưng \widehat{ACD}=\widehat{AFE}  vì thế  \widehat{ABD}=\widehat{ABE} , suy ra  BA là phân giác của góc DBE.

\widehat{AED}=\widehat{AEB}  vì cùng bằng \widehat{AFB}  , do đó EA là phân giác của góc DEB.

A là giao điểm của các đường phân giác của tam giác DBE nên là tâm đường tròn nội tiếp tam giác đó.

Câu hỏi liên quan

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .