Skip to main content

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt tia DS tại S. Gọi I là giao điểm của CD và MB. Trả lời câu hỏi dưới đây:Chứng minh tứ giác AMIO nội tiếp được một đường tròn.

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, M là một điểm trên cung

Câu hỏi

Nhận biết

Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt tia DS tại S. Gọi I là giao điểm của CD và MB.

Trả lời câu hỏi dưới đây:

Chứng minh tứ giác AMIO nội tiếp được một đường tròn.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tứ giác AMIO nội tiếp đường tròn vì có \widehat{AMI}+\widehat{AOI}=180^{\circ}

Câu hỏi liên quan

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Rút gọn A

    Rút gọn A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB