Skip to main content

Cho hai đường tròn (O) và (O') bán kính  R và R' (R > R') tiếp xúc ngoài tại điểm C. Gọi AC, BC là hai đường kính của đường tròn (O); (O'); DE là dây cung của đường tròn (O) vuông góc với AB tại trung điểm M của đoạn AB. Gọi giao điểm thứ hai của đường tròn DC với đường tròn (O') là F. Trả lời câu hỏi dưới đây:Chứng minh bốn điểm M, D, B, F thuộc một đường tròn.

Cho hai đường tròn (O) và (O') bán kính  R và R' (R > R') tiếp xúc ngoài tại điểm C.

Câu hỏi

Nhận biết

Cho hai đường tròn (O) và (O') bán kính  R và R' (R > R') tiếp xúc ngoài tại điểm C. Gọi AC, BC là hai đường kính của đường tròn (O); (O'); DE là dây cung của đường tròn (O) vuông góc với AB tại trung điểm M của đoạn AB. Gọi giao điểm thứ hai của đường tròn DC với đường tròn (O') là F.

Trả lời câu hỏi dưới đây:

Chứng minh bốn điểm M, D, B, F thuộc một đường tròn.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Bốn điểm M, D, B, F thuộc một đường tròn đường kính BD vì có \widehat{BFD}=\widehat{BMD}= 1v

Câu hỏi liên quan

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Rút gọn A

    Rút gọn A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha