Skip to main content

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB. Các tiếp tuyến của đường tròn tại M và B cắt nhau tại điểm P. Các đường thẳng AB, MP cắt nhau tại điểm Q; các đường thẳng AM, OM cắt đường thẳng BP lần lượt tại các điểm R, S. Trả lời câu hỏi dưới đây:Chứng minh rằng MB // SQ

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB.

Câu hỏi

Nhận biết

Cho đường tròn (O; R), đường kính AB và một điểm M nằm trên đường tròn sao cho MA > MB. Các tiếp tuyến của đường tròn tại M và B cắt nhau tại điểm P. Các đường thẳng AB, MP cắt nhau tại điểm Q; các đường thẳng AM, OM cắt đường thẳng BP lần lượt tại các điểm R, S.

Trả lời câu hỏi dưới đây:

Chứng minh rằng MB // SQ


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có ∆ SOB = ∆ QOM  (g.c.g) và OS = OQ.

Vậy : \frac{OS}{OQ}=1=\frac{OM}{OB}  ; suy ra  SQ // MB (định lí Ta-let đảo).

Câu hỏi liên quan

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông