Skip to main content

Hai tiếp tuyến MA và MB của đường tròn (O; R) tạo thành một góc 120° (A và B là các tiếp điểm). Trả lời câu hỏi dưới đây:Từ một điểm N trên cung nhỏ AB kẻ ND, NE, NF theo thứ tự vuông góc với AB, MB, MA (D trên AB, E trên MB, F trên MA). Chứng minh: ND2 = NE.NF

Hai tiếp tuyến MA và MB của đường tròn (O; R) tạo thành một góc 120° (A và B là các tiếp

Câu hỏi

Nhận biết

Hai tiếp tuyến MA và MB của đường tròn (O; R) tạo thành một góc 120° (A và B là các tiếp điểm).

Trả lời câu hỏi dưới đây:

Từ một điểm N trên cung nhỏ AB kẻ ND, NE, NF theo thứ tự vuông góc với AB, MB, MA (D trên AB, E trên MB, F trên MA).
Chứng minh: ND2 = NE.NF


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Hai tam giác vuông AND và BNE có \widehat{NAD}=\widehat{MBN}  nên ∆ AND ~ ∆ BNE.

\frac{ND}{NE}=\frac{AN}{BN}   (1)

Từ (1) và (2) suy ra \frac{ND}{NE}=\frac{NF}{ND}   => ND2 = NE.NF

Câu hỏi liên quan

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Rút gọn A

    Rút gọn A

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Tìm b để A =

    Tìm b để A = frac{5}{2}