Skip to main content

Cho tam giác vuông ABC, \widehat{A}= 1v và AD là đường cao thuộc cạnh huyền. Tia phân giác của góc BAD cắt BC tại M. Vẽ đường tròn đường kính AM. Trả lời câu hỏi dưới đây:Tam giác ACM là tam giác gì?

Cho tam giác vuông ABC,  1v và AD là đường cao thuộc cạnh huyền. Tia phân giác của

Câu hỏi

Nhận biết

Cho tam giác vuông ABC, \widehat{A}= 1v và AD là đường cao thuộc cạnh huyền. Tia phân giác của góc BAD cắt BC tại M. Vẽ đường tròn đường kính AM.

Trả lời câu hỏi dưới đây:

Tam giác ACM là tam giác gì?


A.
Tam giác thường
B.
Tam giác cân
C.
Tam giác vuông
D.
Tam giác đều.
Đáp án đúng: B

Lời giải của Luyện Tập 365

\widehat{B}=\widehat{CAD}  (cùng chắn phần phụ là \widehat{C} ). Từ đó dễ dàng chứng minh được \widehat{AMC}=\widehat{MAC}   => ∆ ACM là tam giác cân

Câu hỏi liên quan

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Rút gọn A

    Rút gọn A