Skip to main content

Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng \frac{3}{2}, trọng tâm G của ∆ABC thuộc đường thẳng d: 3x - y -8 = 0. Tìm bán kính đường tròn nội tiếp ∆ABC.

Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng \frac{3}{2}, trọng tâm G của ∆ABC thuộc đường thẳng d: 3x - y -8 = 0. Tìm bán kính đường tròn nội tiếp ∆ABC.


A.
\frac{2}{\sqrt{2}+\sqrt{65}+\sqrt{89}}
B.
\frac{3}{\sqrt{2}+2\sqrt{5}}
C.
\frac{3}{\sqrt{2}+2\sqrt{5}} hoặc \frac{2}{\sqrt{2}+\sqrt{65}+\sqrt{89}}
D.
\frac{3}{\sqrt{2}+\sqrt{65}+\sqrt{89}}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Viết phương trình cạnh AB.

Ta có \overrightarrow{AB}=(1;1) => \vec{n_{AB}}(1; -1) => (AB): x - y - 5 = 0.

Gọi C(a;b) => d(C; AB)=\frac{|a-b-5|}{\sqrt{2}} =\frac{2S_{\Delta ABC}}{AB} =>|a -b - 5| = 3.

<=> \begin{bmatrix} a-b=8&(1)\\a-b=2&(2) \end{bmatrix}

Trọng tâm G \left ( \frac{a+5}{3};\frac{b-5}{3} \right )\in d nên ta có: 3\frac{(a+5)}{3}-\frac{b-5}{3}-8=0 => 3a - b = 4.  (3)

Từ (1), (3) => C(-2; 10) => r = \frac{S}{p}\frac{3}{\sqrt{2}+\sqrt{65}+\sqrt{89}}

Từ (2), (3) => C(1;-1) => r = \frac{S}{p} = \frac{3}{\sqrt{2}+2\sqrt{5}}  (với p =\frac{AB +AC+BC}{2})

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.