Skip to main content

Chứng minh rằng đường thẳng MN luôn luôn đi qua một điểm cố định khi điểm M di động trên cạnh BC.

Chứng minh rằng đường thẳng MN luôn luôn đi qua một điểm cố định khi điểm M di động trên

Câu hỏi

Nhận biết

Chứng minh rằng đường thẳng MN luôn luôn đi qua một điểm cố định khi điểm M di động trên cạnh BC.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Kẻ đường tròn (O1), ngoại tiếp tam giác ABC. Tia NM cắt (O1) tại điểm thứ hai P thì \widehat{ACB}=\widehat{MNC} = (\frac{1}{2} sđ cung MC).

Vậy sđ cung CP = 2\widehat{MNC}=2\widehat{ACB} = sđ cung AB = không đổi . Hơn nữa, P nằm trên nửa mặt phẳng bờ BC không chứa N nên P cố định.

Câu hỏi liên quan

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Rút gọn A

    Rút gọn A

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2