Skip to main content

Cho tam giác ABC có ba góc đều nhọn và một điểm M nằm giữa B, C. Qua M dựng đường tròn (O) tiếp xúc với AB tại B và đường tròn (O') tiếp xúc với AC tại C; gọi giao điểm thứ hai của chúng là N. Trả lời câu hỏi dưới đây:Giả sử đường thẳng MN cắt các tia AB, AC lần lượt tại các điểm Q, R. Qua R kẻ đường thẳng tiếp xúc với (O) cắt tia AB tại điểm S; qua Q kẻ đường thẳng tiếp xúc với (O') cắt tia AC tại điểm T. Chứng minh rằng tứ giác QSRT ngoại tiếp được.

Cho tam giác ABC có ba góc đều nhọn và một điểm M nằm giữa B, C. Qua M dựng đường tròn (O)

Câu hỏi

Nhận biết

Cho tam giác ABC có ba góc đều nhọn và một điểm M nằm giữa B, C. Qua M dựng đường tròn (O) tiếp xúc với AB tại B và đường tròn (O') tiếp xúc với AC tại C; gọi giao điểm thứ hai của chúng là N.

Trả lời câu hỏi dưới đây:

Giả sử đường thẳng MN cắt các tia AB, AC lần lượt tại các điểm Q, R. Qua R kẻ đường thẳng tiếp xúc với (O) cắt tia AB tại điểm S; qua Q kẻ đường thẳng tiếp xúc với (O') cắt tia AC tại điểm T. Chứng minh rằng tứ giác QSRT ngoại tiếp được.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi I, K theo thứ tự là tiếp điểm của RS với (O); của QT với (O').

Ta có: RI=\sqrt{RM.RN}=RC ; OK=\sqrt{QN.QM}=QB

Suy ra  RS + QT = SI + IR + QK + KT = SB + RC + QB + CT = SQ + RT

=> đpcm.

Câu hỏi liên quan

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.