Skip to main content

Cho tam giác ABC ngoại tiếp một đường tròn (O, r). Chứng minh rằng mỗi tiếp điểm thuộc một cạnh chia cạnh ấy thành hai đoạn sao cho tổng của mỗi đoạn đó với cạnh không kề với nó bằng nửa chu vi tam giác ABC. Chứng minh S= pr, trong đó S, p lần lượt là diện tích và nửa chu vi tam giác ABC.

Cho tam giác ABC ngoại tiếp một đường tròn (O, r). Chứng minh rằng mỗi tiếp điểm thuộc một

Câu hỏi

Nhận biết

Cho tam giác ABC ngoại tiếp một đường tròn (O, r). Chứng minh rằng mỗi tiếp điểm thuộc một cạnh chia cạnh ấy thành hai đoạn sao cho tổng của mỗi đoạn đó với cạnh không kề với nó bằng nửa chu vi tam giác ABC. Chứng minh S= pr, trong đó S, p lần lượt là diện tích và nửa chu vi tam giác ABC.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Giả sử có ∆ ABC với đường tròn nội tiếp (O; r) tiếp xúc các cạnh BC, CA, AB tương ứng tại các điểm H, I, K. Ta có: AI = AK (= r) ; BK = BH (=s); CH = CI ( = t)  (định lí).

Do đó p = r + s + t.  

Xét chẳng hạn đoạn HC, ta có HC + BA = HC + BK + KA = t + s + r = p

Suy ra đpcm. Nối OA, OB, OC ta có:

S=S_{\Delta OAB}+S_{\Delta OBC}+S_{\Delta OCA}=\frac{1}{2}r(AB+BC+CA)=rp

Câu hỏi liên quan

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải phương trình với a = -2

    Giải phương trình với a = -2