Skip to main content

Cho nửa đường tròn tâm O, đường kính AB và một điểm M nằm trên nửa đường tròn đó. Người ta kẻ trên nửa mặt phẳng, bờ AB, có chứa điểm M các tia Ax, By vuông góc với AB. Một đường tròn (O’) đi qua A, M cắt đoạn thẳng AB và tia Ax lần lượt tại các điểm C, P ; đường thẳng PM cắt By tại một điểm Q. Trả lời câu hỏi dưới đây:Chứng minh tứ giác BCMQ nội tiếp được.

Cho nửa đường tròn tâm O, đường kính AB và một điểm M nằm trên nửa đường tròn đó. Người

Câu hỏi

Nhận biết

Cho nửa đường tròn tâm O, đường kính AB và một điểm M nằm trên nửa đường tròn đó. Người ta kẻ trên nửa mặt phẳng, bờ AB, có chứa điểm M các tia Ax, By vuông góc với AB. Một đường tròn (O’) đi qua A, M cắt đoạn thẳng AB và tia Ax lần lượt tại các điểm C, P ; đường thẳng PM cắt By tại một điểm Q.

Trả lời câu hỏi dưới đây:

Chứng minh tứ giác BCMQ nội tiếp được.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có tứ giác MPAC nội tiếp được, và \widehat{PMC}+\widehat{PAC}=180^{\circ}

Suy ra \widehat{QMC}=\widehat{PAC}=90^{\circ}  (chương II)

Vậy \widehat{QMC}+\widehat{QBC}=90^{\circ}+90^{\circ}=180^{\circ} và tứ giác QBCM nội tiếp được.

Câu hỏi liên quan

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông