Skip to main content

Gọi P,Q lần lượt là trung điểm của IM, IA. Chứng minh rằng tứ giác BCQP nội tiếp được.

Gọi P,Q lần lượt là trung điểm của IM, IA. Chứng minh rằng tứ giác BCQP nội tiếp được.

Câu hỏi

Nhận biết

Gọi P,Q lần lượt là trung điểm của IM, IA. Chứng minh rằng tứ giác BCQP nội tiếp được.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có PQ là đường trung bình, do đó PQ // MA và \widehat{PQB}=\widehat{MAB}

Ta có: \widehat{MCB}=\widehat{MAB}=\widehat{PQB} và tứ giác BCQP nội tiếp được..

Câu hỏi liên quan

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn biểu thức A

    Rút gọn biểu thức A