Skip to main content

Chứng minh rằng góc MHB có độ lớn không đổi. Tìm tập hợp điểm H.

Chứng minh rằng góc MHB có độ lớn không đổi. Tìm tập hợp điểm H.

Câu hỏi

Nhận biết

Chứng minh rằng góc MHB có độ lớn không đổi. Tìm tập hợp điểm H.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Dễ dàng có \widehat{AHB}=45^{\circ} AB cố định nên điểm H nằm trên cung (\alpha) chứa góc 45° vẽ trên đoạn AB và nằm trên nửa mặt phẳng bờ AB có chứa điểm M.

Giới hạn quỹ tích. Khi M trùng A thì H trùng H1 (H1 là giao giữa cung (\alpha) và đường thẳng vuông góc với AB tại A. Khi M trùng B thì H trùng B. Vậy quỹ tích của H là cung H1B một phần của cung (\alpha) .

Câu hỏi liên quan

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.