Skip to main content

Xét đoạn thẳng AB. Trên nửa mặt phẳng bờ AB kẻ các tia Ax và By song song với nhau. Một đường tròn tâm M tiếp xúc với AB, Ax, By theo thứ tự tại C, D, E. Trả lời câu hỏi dưới đây:Chứng minh rằng AD + BE không phụ thuộc vào vị trí Ax, By. Chứng minh D, M, E thẳng hàng.

Xét đoạn thẳng AB. Trên nửa mặt phẳng bờ AB kẻ các tia Ax và By song song với nhau. Một

Câu hỏi

Nhận biết

Xét đoạn thẳng AB. Trên nửa mặt phẳng bờ AB kẻ các tia Ax và By song song với nhau. Một đường tròn tâm M tiếp xúc với AB, Ax, By theo thứ tự tại C, D, E.

Trả lời câu hỏi dưới đây:

Chứng minh rằng AD + BE không phụ thuộc vào vị trí Ax, By. Chứng minh D, M, E thẳng hàng.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

AD + BE = AB không đổi. ME ┴ By và Ax // By  => ME ┴ Ax  => D, M, E thẳng hàng.

Câu hỏi liên quan

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k