Skip to main content

Cho tam giác ABC cân (AB = AC) có ba đỉnh nằm trên đường tròn (O) và một điểm M bất kì trên cung nhỏ AC. Tia Bx vuông góc với AM cắt tia CM tại D. Trả lời câu hỏi dưới đây:Chứng minh tam giác BMD cân

Cho tam giác ABC cân (AB = AC) có ba đỉnh nằm trên đường tròn (O) và một điểm M bất kì trên

Câu hỏi

Nhận biết

Cho tam giác ABC cân (AB = AC) có ba đỉnh nằm trên đường tròn (O) và một điểm M bất kì trên cung nhỏ AC. Tia Bx vuông góc với AM cắt tia CM tại D.

Trả lời câu hỏi dưới đây:

Chứng minh tam giác BMD cân


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Dễ dàng có \widehat{AMD} = \widehat{AMB} => MA vừa là đường cao vừa là phân giác

=> ∆ BMD cân.

Câu hỏi liên quan

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Rút gọn A

    Rút gọn A