Skip to main content

Cho hai đường tròn (O1;R1) và (O2;R2) (R1<R2) tiếp xúc ngoài với nhau tại A .Kẻ các đường kính AO1Bvà AO2C.Gọi DElà tiếp tuyến chung ngoài của hai đường tròn (D∈(O1),E∈(O2)).Gọi M là giao điểm của BD và CE. Trả lời câu hỏi dưới đây:Gọi giao điểm của DE với AB là J .Tính JA theo R1 theo R2

Cho hai đường tròn (O1;R1) và (O2;R2) (R1<R2) tiếp xúc ngoài với nhau tại A .Kẻ các đường

Câu hỏi

Nhận biết

Cho hai đường tròn (O1;R1) và (O2;R2) (R1<R2) tiếp xúc ngoài với nhau tại A .Kẻ các đường kính AO1Bvà AO2C.Gọi DElà tiếp tuyến chung ngoài của hai đường tròn (D∈(O1),E∈(O2)).Gọi M là giao điểm của BD và CE.

Trả lời câu hỏi dưới đây:

Gọi giao điểm của DE với AB là J .Tính JA theo R1 theo R2


A.
JA =\frac{5R_{1}R_{2}}{R_{2}-R_{1}}
B.
JA =\frac{3R_{1}R_{2}}{R_{2}-R_{1}}
C.
JA =\frac{R_{1}R_{2}}{R_{2}-R_{1}}
D.
JA =\frac{2R_{1}R_{2}}{R_{2}-R_{1}}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Do DO1//EO2, theo định lí Ta-let ta có :

\frac{JO_{1}}{JO_{2}}=\frac{DO_{1}}{EO_{2}}< => \frac{JO_{1}}{JO_{2}-JO_{1}}=\frac{DO_{1}}{EO_{2}-DO_{1}}< =>\frac{JO_{1}}{R_{1}+R_{2}}=\frac{R_{1}}{R_{2}-R_{1}}

=> JO1=\frac{R_{1}(R_{1}+R_{2})}{R_{2}-R_{1}}  => JA = \frac{R_{1}(R_{1}+R_{2})}{R_{2}-R_{1}} +R1 =\frac{2R_{1}R_{2}}{R_{2}-R_{1}}

Câu hỏi liên quan

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k