Skip to main content

Gọi giao điểm của của CN và DM là P. Xác định các giao điểm của hai đường tròn (M; MA) và (N; NA).

Gọi giao điểm của của CN và DM là P. Xác định các giao điểm của hai đường tròn (M; MA) và

Câu hỏi

Nhận biết

Gọi giao điểm của của CN và DM là P. Xác định các giao điểm của hai đường tròn (M; MA) và (N; NA).


A.
M và N
B.
M và P
C.
A và M
D.
A và P
Đáp án đúng: D

Lời giải của Luyện Tập 365

∆ NPD cân vì có \widehat{NDP} = \widehat{NPD}   (dễ dàng chứng minh điều này) => NP = ND

mà ND = NA (cung ND = cung NA).

Vậy đường tròn (N; NA) đi qua A, P. Cũng chứng minh tương tự ta có đường tròn (M; MA) đi qua A, P.

Vậy giao điểm của hai đường tròn đó là A, P.

Câu hỏi liên quan

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k