Skip to main content

Cho đường tròn (O) và dây AB. Gọi M là điểm chính giữa của cung AB và C là điểm bất kì nằm giữa A, B. Tia MC cắt đường tròn (O) tại D. Trả lời câu hỏi dưới đây:Chứng minh MB là tiếp tuyến của đường tròn (O1) đi qua ba điểm B, C, D tại B.

Cho đường tròn (O) và dây AB. Gọi M là điểm chính giữa của cung AB và C là điểm bất kì nằm

Câu hỏi

Nhận biết

Cho đường tròn (O) và dây AB. Gọi M là điểm chính giữa của cung AB và C là điểm bất kì nằm giữa A, B. Tia MC cắt đường tròn (O) tại D.

Trả lời câu hỏi dưới đây:

Chứng minh MB là tiếp tuyến của đường tròn (O1) đi qua ba điểm B, C, D tại B.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Kẻ tiếp tuyến Bx (hình vẽ) với (O1) đi qua 3 điểm B, C, D ta có \widehat{CBx}=\widehat{CDB}=\frac{1}{2 } sđ cung CB  mà \widehat{CBM}=\widehat{CDB}  (chứng minh trên) và nó cùng nằm trên nửa mặt phẳng bờ AB  => Bx trùng BM (đpcm).

Câu hỏi liên quan

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Rút gọn A

    Rút gọn A

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2